Blow Moulding Machine,Blow Molding Machine Manufacturers & Suppliers
Blow Moulding Machine,Manufacturers Of Blow Molding Machine From Taiwan and China.
 Hot Searches: PET Blowing Machine Stretch Blow Molding PET Bottle Machine Extrusion Blow Molding Auto Blowing Machine 
Other Technical Articles
· Multi-Layer Injection Molded Tubs
( 2011-09-01 )
· Microcellular Foam Molds 'Impossible' Parts
( 2011-08-19 )
· Reasons Why Non-Return Valves Leak
( 2011-08-05 )
· Nylon Compound Aims Metal in Cars
( 2011-07-21 )
· Nanolayers Come to Tubing
( 2011-07-05 )
· A Legacy Built on Automation
( 2011-06-21 )
· New Hydraulic Press Saves Energy by up to 40%
( 2011-06-15 )
· How to Manage Multiple Heads
( 2011-06-08 )
Technical Articles
Home >> Technical Articles >>A brief introduction of plastic blow molding process
A brief introduction of plastic blow molding process
Time: 2008-11-25
In its infancy, blow molding was used primarily for the production of plastic bottles for packaging detergents and bleaches. The process was more art than science. Now a highly developed technology, it can produce parts which either cannot be made by another process, or be made as economically. Containers remain a major application.
Materials Used
The most commonly used blow molding materials include high, medium and low density polyethylene; polypropylene; nylon; thermoplastic elastomers (TPR, TPO, TPE); polyester; BDS and others. Polyethylenes have properties suited for low temperature use (-40F) and excellent environmental stress/crack resistance. The maximum temperature range for HDPE (high density polyethylene) is between 180-225F.
Polypropylene presents the problem of cracking in cold weather and should not be subjected to stresses at temperatures below 01F. On the other hand, it can withstand temperatures approximately 25F higher than HDPE. Also, it is less expensive on a cost/volume basis.
Both materials can be painted but surfaces must first be prepared for painting using flame or chemical treatments.
Types of Parts
Many blow molded parts have little or no resemblance to containers, in the general sense, yet they can be produced most cost effectively using blow molding. Usually, if the part has uniform wall thicknesses, and the outside shape is the major consideration, it is a candidate for the savings offered by blow molding's comparatively low tooling costs and high production rates. If there are openings in a part, consider them sealed off for evaluation purposes. Parts can be produced as sealed units and the required openings provided by secondary operations. This is where the tooling economies are evident. Tooling for the inside of the part is compressed air, far less expensive than metal forms, if indeed the geometry of the part would permit their use.
Also, making the part in one piece is less costly than molding and assembling two or more components.
Typical parts include: coolant overflow jars for trucks and automobiles, dehumidifier buckets, drinking water storage tanks, flexible bellows, hoses, boots, sprayer tanks, toys, tool cases, medical products, air ducts, and much more.
Tooling Savings
Compared to the cost of tooling for injection molding a part, blow molding tooling weighs considerably less and its cost is 25-40 percent less, on average. On the other hand, coring elements needed for injection molding do result in uniformity of wall thickness. If this is a vital part requirement, the use of blow molding should not be considered.
Mold Materials & Manufacture
Molds can be cast, machined, EDMed or any combination of the three. Most cast molds are made from aluminum with the casting having a hollow back or water jacket, required for cooling in the case of large parts or those with extreme contours. Molds with simple geometric shapes which can be easily machined are produced from aircraft aluminum blocks. A series of cross-drilled holes are usually provided for the water cooling system. When high volume production is called for, on the order of 60,000 or more pieces per month, molds are cast in beryllium-copper to take advantage of the hardness of the copper alloys. It also gives an excellent parting line surface that takes maximum wear. Also, since copper offers twice the thermal conductivity of aluminum, faster molding cycles are possible, although molds are approximately one-third more costly than the same molds in aluminum due to the cost of the alloy.
Mold Preparation
The cavities of the mold are usually sandblasted to produce a matte finish on the part. This helps air to escape as the parison expands and also hides any minor surface imperfections on the parison. All cavities must be vented. To provide for air escape, slotted 1/16" to 1/2" diameter brass pins are pressed flush to the cavity surface at its deepest points. The slots have insignificant, if any, effect on the part surface. If even a minor effect is not acceptable, other venting methods are used. Without vents, air trapped between the parison and the cavity walls would prevent the part from filling out and cause irregular surfaces.
The number of molds needed
Dependent on part size, shape, production volume and other factors, the number of molds needed will vary. Extruder capacity is another variable, as is the mold size capacity of the blow molding machine. Machines are built to take one, two or four molds. Each mold station can be fed by 1, 2, 3 or more vertically-dropping parisons. (Each mold can have one or more adjacent cavities.) Also, cavities can be repeated in multiples stacked one above the other in single or multiple rows.
The type and combination of mold possibilities used are determined by the factors previously mentioned, with production volume required usually the dominant factor.
Mold/Part Cooling
Cycle time depends on cooling time. Until the blown-to-shape parison solidifies, the part cannot be removed from the mold. For this reason, all molds have cooling systems fed by a central water chiller. To further expedite cooling, some systems use chilled air to blow the parison. Proper cooling is especially important on heavy-walled parts to prevent distortion.
Part Tolerances
The minimum tolerance specified should not be less than 0.020". Requirements for 0.125" tolerances are common on large parts, and must be much higher on parts which may be 4 feet long and have 0.180" thick walls.
Secondary machining operations to provide holes or slots can be very accurately controlled.
Parts should be dimensioned according to the outside form. The wall thicknesses can vary widely based on many factors. It is not uncommon for walls to be 1/8" thick at the mold parting line and as thin as 1/64" in a corner away from it. The thinning which occurs as the plastic stretches must be taken into account when designing a part and finished parts should be approved on a functional basis, not on rigid dimensional checks.
Secondary Operations
Inserts can often be molded in, or added after blow molding. Parts can be drilled, die cut, milled, etc. to meet functional requirements.
The Process
Simply explained, parts are produced by trapping a melted tube of plastic (a parison) between two mold halves and then introducing high pressure air to stretch the parison out to fill the mold cavity.
The following sequence produces the parison and the part:
Plastic pellets (approximately 1/16" cubes) are fed into the hopper of an extruder and feed by gravity down to the extruder screw.
The screw chamber is equipped with a heating unit which melts the plastic as it is pumped by the screw toward the die head of the extruder.
In the die head is a "flow pin" around which the molten plastic flows horizontally at first, and then downward. It emerges from the end of the flow pin as a seamless tube. The tube is extruded to the length required for the part. Extrusion is then halted while horizontally moving mold sections clamp it preparatory to air pressure being applied internally.
Air can be applied by a tube (blow pin) inside the parison flow pin, or by needles built into the mold which pierce the parison as the mold closes.
As pressure is applied, the parison balloons out to fill the mold cavity. Molds are constructed with internal water lines to provide chilled water for cooling the blown part.
Depending on the size of the part, the production rate required, and the capacity of the extruder, multiple molds or molds with multiple cavities may be used and more than one parison at a time extruded.
In considering whether a part can be produced economically, or more economically, by blow molding, look at it first from the viewpoint of not having any openings. If what you visualize is basically hollow, request an evaluation from an experienced blow molder.
Browse By: Search Products | blow moulding machine | blow molding machine | blow moulding machine manufacturers | blow molding machine manufacturers
Copyright © 2011 All rights reserved.